nrwhl

Some fast math

Here is server-side rendered math, requiring no client-side javscript!

f(x)=f^(ξ)e2πiξxdξ f(x) = \int_{-\infty}^\infty\hat f(\xi)\,e^{2 \pi i \xi x}\,d\xi 1(ϕ5ϕ)e25π=1+e2π1+e4π1+e6π1+e8π1+ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }

Let AA' be a set and ϕ0\phi_0 be another. If we take the square root, A×ϕ0<0\sqrt{A' \times \phi_0} < 0 , we arrive at the answer. \square


This

> * _Gauss' Law_ is the following: $\Phi_\text{electric}
  = \frac{Q}{\varepsilon_0}$.

gets rendered into static html as

  • Gauss’ Law is the following: Φelectric=Qε0\Phi_\text{electric} = \frac{Q}{\varepsilon_0} .